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Abstract

An all new, automated version of the PEGASUS
software has been developed and tested. PEGASUS
provides the hole-cutting and connectivity informa-
tion between overlapping grids, and is used as the
final part of the grid-generation process for overset-
grid computational fluid dynamics approaches. The
new PEGASUS code (Version 5) has many new fea-
tures: automated hole cutting; a projection scheme for
fixing small discretization errors in overset surfaces;
more efficient interpolation search methods using an
alternating digital tree and a stencil-jumping scheme;
hole-size optimization based on adding additional lay-
ers of fringe points; and an automatic restart capa-
bility. The new code has also been parallelized using
the Message-Passing Interface standard. The paral-
lelization performance provides efficient speed-up of
the execution time by an order of magnitude, and up
to a factor of 30 for very large problems. The results
of three example cases are presented: a three-element
high-lift airfoil, a generic business jet configuration,
and a complete Boeing 777-200 aircraft in a high-lift
landing configuration. Comparisons of the computed
flow fields for the airfoil and 777 test cases between
the old and new versions of the PEGASUS codes show
excellent agreement with each other and with experi-
mental results.
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Introduction

The overset grid approach, also called the chimera
grid-embedding scheme, has been developed and re-
fined for over 15 years. The strategy of this approach is
to break a complex computational domain into smaller
regions that can each be represented by relatively sim-
ple grids. With this approach comes a major hurdle
in creating the data structure that specifies the inter-
connectivity among the grids. The initial creators of
the chimera grid-embedding scheme' developed the
first versions of the PEGASUS code? to establish the
data structure required for communication among the
overlapping structured meshes. Depicted in Fig. 1
is the relationship between PEGASUS and the flow
solver. Each mesh that makes up the domain is input
into PEGASUS to determine the inter-connectivity
among the meshes, i.e., the interpolation data. The
interpolation data that is passed to the flow solver in-
cludes a list of the mesh points that are interpolated,
the associated interpolation coefficients, and the donor
cell for each interpolated point. Also included in the
interpolation data is a list of the points that are re-
moved (i.e., blanked) from the computational domain
due to the fact that they are interior to a solid body.
These points are also known as hole points. The user
inputs depicted in Fig. 1 specify how this interpolation
data is created.

There are several codes that perform the same ba-
sic functions as PEGASUS. These include DCF3D,?
Beggar,® FASTRAN,® and Overture.® Each of these
codes produces some type of interpolation data that
is used by a flow solver. Additionally, each code has
some level of automation to ease the creation of the
interpolation data. PEGASUS has been successfully
used with OVERFLOW,”8 NXAIR,® INS3D,!? and a
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cell-centered code, DXEAGLE.!!

As Computational Fluid Dynamics (CFD) has ma-
tured and aerodynamic configurations of interest have
increased in complexity, the grid systems used in over-
set methods have also become more complex and have
required greater numbers of grids for accurate repre-
sentation. With earlier versions of PEGASUS, the
user input required for accurate hole cutting and in-
terpolation increased dramatically with the geometric
complexity of the configuration. This placed a high
premium on automation, which defined the major im-
petus for the development of the latest version of PE-
GASUS. The following three subsections contain an
overview of the chimera approach, a brief history of
the PEGASUS code, and then the motivation for the
development of the newest version of the software.

User Inputs
Interpolation
Data .
Solution
PEGASUS o Flow
Solver
Meshes

Fig. 1 PEGASUS/Flow-solver relationship.

Interpolated
Hole
Boundary

Interpolated Outer Boundary

Fig. 2 General concept of overlapping meshes.

Overview of Chimera Approach

The general concept behind the chimera approach
is illustrated in Fig. 2, which depicts two indepen-
dently generated meshes around two solid bodies. The
smaller-body mesh is embedded within the larger-body
mesh. The outer boundary of the smaller-body mesh
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can receive flow-field information interpolated from
appropriate mesh cells (often referred to as interpo-
lation stencils) within the larger-body mesh. How-
ever, a reverse process must occur as well; the larger-
body mesh must receive flow-field information from
the smaller-body mesh. An artificial boundary must
be defined within the larger-body mesh, since certain
points within the this mesh are interior to the smaller
body, and thus do not lie within the domain of the flow
field. The artificial boundary points of the larger-body
mesh that are fully contained within the smaller-body
mesh can be updated by interpolation from cells of the
smaller-body mesh. Generally, any mesh can receive
information from other meshes through outer bound-
ary and artificial boundary points.

The interpolation process is further illustrated in
Fig. 3, which depicts a portion of the overlap region
between two meshes. Mesh 1 points that are inside the
solid body of mesh 2 are excluded from the computa-
tional domain. In chimera terminology, these points
are “blanked out” and are then known as hole points.
The points in mesh 1 surrounding the blanked points
are known as hole-fringe points; they receive flow-field
information interpolated from mesh cells within mesh
2. These hole-fringe points are denoted with square
symbols in Fig. 3. Correspondingly, points on the
outer boundary of mesh 2 receive flow-field informa-
tion interpolated from cells in mesh 1. These points
are denoted by the circular symbols in Fig. 3.

¢
[N

Boundary of
holein mesh 1

wall boundary

Mesh 2 outer boundary

Fig. 3 Detail view of overlap region.

History of PEGASUS

The PEGASUS code has been a main component of
the overset grid methodology since its inception and
has gone through many upgrades, increasing its gener-
alization, speed, flexibility, and automation. The first
version of PEGASUS? had limited connectivity and
hole cutting capabilities. In particular, a grid hier-
archy was imposed, i.e., a grid could only cut a hole
in a larger grid and could only interconnect with this
larger grid. Simple overlapping, with hole cutting, was
not allowed. Additionally, the hole cutter was limited
to specific types of topologies. If a new topology was
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required, the PEGASUS code had to be modified to
accept this new topology.

Version 2 of PEGASUS!? added more generalization
to the interconnectivity. With this generalization there
were no restrictions on the interconnectivity among
the grids. Grids were allowed to cut holes in any num-
ber of grids and to overlap or overset any number of
grids. Still, hole cutters were limited to specific topolo-
gies.

In version 3 of PEGASUS!? the hole cutting meth-
ods were generalized. Greater control was given to the
user in creating holes. Holes could be created by any
number of surfaces from a single grid. This greatly
increased the complexity of geometries that could be
handled. Additionally, the NAMELIST user input was
improved.

Version 4 of PEGASUS' continued the improve-
ments in hole cutting by allowing surfaces from multi-
ple grids to create a hole. Also, PEGASUS 4 included
a restart capability that was particularly useful for
moving body problems.

Motivation for PEGASUS Version 5

As problem sizes increased, the number of inputs
required in the version 4 PEGASUS input file in-
creased significantly. For example, a particular high-
lift aircraft case'® that contained 153 meshes and 33
million grid points required over 17,000 lines of PEGA-
SUS input. Generating this input file required many
weeks of work by an experienced user; this much in-
put also created the potential for many user input
errors. In 1996 the NASA Advanced Subsonic Tech-
nology /Integrated Wing Design program set a goal of
reducing the amount of time to produce a solution for
an entire aircraft in a high-lift configuration. The au-
tomation of PEGASUS was one of the objectives of
this project, such that the user would have to provide
little or no input to the code. This paper is a presenta-
tion of the results of this effort by the authors. Unlike
earlier versions of PEGASUS, which borrowed heavily
from earlier versions, PEGASUS 5 implements a com-
pletely redesigned approach. An entirely new code was
written from scratch, implementing new features and
algorithms designed to automate the process of over-
setting structured overset grids. The new version was
written in Fortran90, to take advantage of dynamic
memory allocation and programming features, such as
pointers, that lend themselves to particular require-
ments of establishing domain connectivity.

The following sections describe the code features,
including minimization of user input, automatic hole
cutting, methods used for searching and selection of in-
terpolation points, optimization of the holes and over-
lapping grid regions, projection of overlapping viscous
grid surfaces, and the automatic restart procedure. A
description of the parallelization of the code is pre-
sented. Finally, three computational examples are
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presented, including comparisons of flow-solutions ob-
tained using the grid systems generated by both the
old and the new PEGASUS codes.

Automation of the Oversetting Process

There are three primary operations that PEGASUS
performs to create the interpolation data required by
the flow solver. The first of these steps is hole cut-
ting. The mesh points that are within a solid body
must be identified, so that they can be removed from
the computational domain by the flow solver. Looking
back at Fig. 2, the airfoil mesh points that are con-
tained within the flap mesh must be identified. For
two-dimensional grids, this process appears to be rel-
atively easy, but for three dimensions and multiple
overlapping meshes the hole cutting process can be
difficult.

The second step is to identify the interpolation
points. There are two types of interpolation points:
hole-fringe points and outer-boundary points (see Figs.
2 and 3). The hole-fringe points are easily identified
as any point that has a hole-point as a neighbor. An
outer-boundary point is any point which lies on the
boundary of a computational mesh and which will not
be updated by a boundary condition within the flow
solver.

The third step is the identification of the donor cells
that will be used to update the interpolated fringe and
boundary points identified in the previous step. If a
suitable donor cell cannot be found for an interpolation
point, the point is termed an “orphan”.

The first two of these steps requires knowledge of
the complete set of boundary conditions that are to
be applied by the flow solver onto each mesh. The
PEGASUS 5 code, therefore, requires the flow solver
boundary conditions as part of its input. The format
and definitions of the boundary conditions for this in-
put were adopted from the OVERFLOW code. Some
grid-generation software provides a mechanism to pro-
duce an OVERFLOW input file automatically. For ex-
ample, the OVERGRID package,'8 which is part of the
Chimera Grid Tools,'?, has a feature that will auto-
matically detect the appropriate boundary conditions
for each mesh, and write out both an OVERFLOW
input file and a PEGASUS 5 input file.

Hole Cutting

An automatic hole-cutting capability is provided
with PEGASUS 5, although the manual hole-cutting
approaches in previous versions have been retained to
provide backward compatibility. The automated hole-
cutting approach is based upon a Cartesian hole-map
coupled with a line-of-sight algorithm. Parts of the
current approach were based on ideas originally devel-
oped by Steger'® and by Chiu and Meakin.'®
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The automatic hole generation process is illustrated
using a two-dimensional example (i.e., a 3-element air-
foil). Figure 4 illustrates the solid boundaries of the
airfoil, as defined in the PEGASUS 5 input file. The
definition of the solid boundaries of the configura-
tion must represent an air-tight surface, with no gaps,
holes, or leaks. If the automatically generated or orig-
inal user-generated boundary conditions do not define
an air-tight surface, the user can specify additional
boundary conditions in the input file to augment the
surface and close any gaps.

Fig. 4 Three-element airfoil solid boundaries.

The overall objective of the hole-cutting process is
to partition the computational domain into “inside”
and “outside” regions. In PEGASUS 5, this is accom-
plished using Cartesian meshes, where it is desired to
mark each Cartesian element as an “inside”, “outside”,
or “fringe” element. Spatial partitioning approaches
used in previous versions of PEGASUS were based on
the use of surface normals. This approach exhibited
many situations that had to be dealt with as special
cases, particularly when dealing with CFD configura-
tions with surface discontinuities. Instead, PEGASUS
5 uses a hole-cutting approach that does not depend
on surface normal definitions, and therefore can ac-
commodate surface discontinuities.

A Cartesian mesh is generated which fully encom-
passes the solid boundaries of the configuration. The
elements of the Cartesian mesh which intercept the
solid surface elements of the airfoil are identified and
designated as fringe elements. Some of the fringe ele-
ments in the slat-wing region of the 3-element airfoil
are depicted in Fig. 5.

Fig. 5 Fringe elements.

It is assumed that the corner elements of the Carte-
sian mesh are “outside” elements. Any unidentified
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(i.e., non-fringe) element that is adjacent to an out-
side element must itself be an outside element. The
outside region is thereby identified by a painting algo-
rithm that marches from the corner elements inward
until no more elements that are adjacent to outside
elements can be found. The outside region is thereby
completely defined, and is depicted in Fig. 6.

Fig. 6 Outside elements.

Finally, any element remaining that is not either an
outside or fringe element must be an “inside” element.
Inside elements are depicted in Fig. 7.

Fig. 7 Inside elements.

The Cartesian mesh is now a completed “hole map”.
Given an arbitrary grid point, the Cartesian element
within the hole map in which the point resides can very
quickly be identified. Points that are encompassed
by “outside” or “inside” elements are marked as field
points or hole points, respectively. Points that fall
within fringe elements can assume either identity, and
therefore must undergo further processing. PEGASUS
5 uses a “line-of-sight” algorithm to determine the sta-
tus of such a grid point. This algorithm tests to see if a
clear line-of-sight exists between the point and an out-
side or inside (i.e., non-fringe) element, and if so, then
the point will assume the identity of that element. A
clear line-of-sight means that a vector from the point
to a neighboring non-fringe element does not intersect
the solid surface contained in the fringe element. This
algorithm is illustrated in Fig. 8. Points that can
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“see” an outside element are field points; points that
can “see” an inside element are hole points. In the ex-
ample of Fig. 8, point A is outside. Point B is inside,
and will be marked as a hole point.

Outside Element Outside Element Fringe Element

Fringe Element l Fringe Element L~  Fringe Element

A B

/
Fringe Element Inside EIememl Inside Element

/_,—Solid Surface

Fig. 8 Line-of-sight algorithm.

Outer Boundary Specification

The automation of the outer-boundary point specifi-
cation is straightforward, since all boundary conditions
have been supplied in the input file and are available
to PEGASUS 5. The minimum and maximum index
surfaces that have not been specified as boundary con-
ditions for the flow solver are designated as the outer
boundaries, and these points are added to the list of
points that require interpolation stencils.

It can be desirable to have two layers of interpolation
points at the hole fringes and at the outer boundaries.
The number of layers of interpolation points is known
as the “fringe level”. For example, the symbols in
Fig. 3 illustrate a fringe level of two. A fringe level
of two has certain advantages within the flow solver
and can produce more accurate solutions. In the new
code the user can set the fringe level for holes and
outer boundaries with a single input, or set the fringe
level for holes and outer boundaries separately. It
should be noted that not all flow solvers accommo-
date a mixed single/double fringe level of interpolated
boundary points.

Boundary Point Interpolation

The identification of hole and outer boundary points
is a starting point for the overlap optimization pro-
cedure employed by PEGASUS 5. With optimized
overlap, many points interior to the grid may ulti-
mately be identified as interpolated boundary points.
Therefore, the interpolation process in PEGASUS 5
begins by searching for all possible donor cells from all
grids for every single grid point. This entire process is
broken down into sub-processes, each involving a pair
of grids, one as the donor, the other as the recipient.

5

Note that for any two grids A and B, there are two
sub-processes: one with grid A as the donor and grid
B as the recipient; the other with grid B as the donor
and grid A as the recipient. There are N*(N-1) possi-
ble donor/recipient grid pairs, where N is the number
of grids in the configuration. Since the number of grid
pairs grows as the square of N, the interpolation ap-
proach used by PEGASUS 5 places a high premium
on the efficiency of the interpolation process.

The interpolation sub-process for a given grid pair
begins by testing the intersection of the two meshes,
using several different Cartesian and rotated Cartesian
boxes. For each grid, these boxes are the smallest box
that fully surrounds all of the grid points. If the boxes
of the two different grids do not intersect, then no in-
terpolation between the grid pairs is possible. The
sub-process next loops through every single grid point
in the recipient grid. Inside this loop it first tests to
see if the grid point is inside the Cartesian boxes of
the donor grid, and discards the point if it is not. It
then proceeds by searching for a donor-grid cell that is
“close” to the final interpolation cell in the donor grid.
This is accomplished efficiently through a spatial par-
titioning scheme; the approach used in PEGASUS 5
is based on a data structure known as an Alternating
Digital Tree (ADT).2° ADT structures are generated
and stored for each mesh at the beginning of the pro-
gram’s execution. Given a grid ADT and the recipient
grid point, a “close” cell in the donor grid can be found
very quickly.

Once a close donor cell has been identified, a stencil-
jumping algorithm is used to find the donor cell which
contains the recipient point. Given the target-point
x,y,z coordinates and the current close donor cell, the
stencil-jumping process inverts the equations for tri-
linear interpolation using a Newton iteration. This
solves for the three computational-space indices rel-
ative to the current donor cell. If these indices are
between 0.0 and 1.0, the target point is contained
in the current donor cell and the process terminates.
Otherwise, these indices are used to provide a direc-
tion and distance to “jump” from the current cell to
a new donor cell, and the process is repeated. The
Newton iteration generally requires only three to five
inversions, and only two or three stencil jumps are re-
quired if the initial donor cell is close enough and the
grid is smooth.

This stencil-jumping algorithm and its variants are
the most commonly used approaches for finding donor
cells. This algorithm has also been called “gradient
search” and “stencil-walking”. The difference between
the stencil-walking and stencil-jumping approaches is
that the former search is restricted to move one grid
cell at a time, while the latter allows the search to jump
across multiple grid cells in one step. See Refs. 3 and
21 for more details on the stencil-walking algorithm,
including the equations for tri-linear interpolation and
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the Newton scheme used to solve them.

The implementation of the stencil-jumping proce-
dure includes some additional enhancements to im-
prove its robustness. The stencil jump is limited to
a maximum of five grid cells per jump in any one
computational direction. Another enhancement is the
ability to detect and to “jump” across the computa-
tional boundary in a C-grid or in a periodic O-grid.
This is important because the initial starting point re-
turned by the ADT may be close in physical space
to the final interpolation element, but may be much
farther away in computational space.

Cell Difference Parameter

It is common in an overset grid system to have three
or more grids overlapping in the same physical space.
Therefore, it is common for a particular boundary or
fringe recipient point to have two or more possible
donor cells. A new algorithm has been implemented
in PEGASUS 5 which is used to determine which of
the possible donor cells to select in this case. Previous
versions of the PEGASUS code required the user to
supply a prioritized link list for each grid. This list
specified which grids could act as donor grids for the
given recipient grid and all of its points. This approach
not only required a lot of detailed input from the user,
but it also unnecessarily constrained the choices for the
donor interpolation cells. The current approach avoids
the global constraint for each mesh, and instead exam-
ines the local cells in each individual case.

Experience has shown that the accuracy of a CFD
simulation can be degraded when the size of the donor
grid cells in the overlapping region are a significantly
different size than the recipient cell. This is due to
the disparate abilities of a coarse mesh to resolve a
flow gradient as compared to a finer mesh. Based on
this observation, the new algorithm selects the best
donor cell using a measure of the difference in size
and orientation between the donor and recipient cells.
A qualitative measure of this difference has been de-
veloped, and is called the cell-difference parameter
(CDP). The CDP is defined as:

CDP = i (Xj)DB * VB - (Xj)D] *VI
= (Xj)pB * VB

where (X;)pp is the maximum of the jt* component
of the four diagonals of the boundary cell, (X;)pr is
the maximum of the j** component of the four diago-
nals of the interpolation cell, Vg is the volume of the
minimum Cartesian cell encompassing the boundary
cell, and V7 is the volume of the minimum Cartesian
cell encompassing the interpolated cell. Values for the
cell difference parameter will vary from 0 (the best) to
very large values. Examples of the CDP are shown in
Fig. 9 for different pairs of two-dimensional cells.
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The final step in creating a good solution to the con-
nectivity of overset grids requires some type of overlap
optimization. In previous versions of PEGASUS, it
was left up to the user to determine how much over-
lap to leave between neighboring grids and where the
overlap boundaries should occur. This required a sig-
nificant amount of user expertise and time. Other
authors have also attempted to automatically resize
the holes and optimize the grid overlap,'®?2 however,
the current approach is unique. The new algorithm
has been developed on the premise that the donor and
the recipient interpolation cells should be of similar
size. The overlap optimization process in PEGASUS
5 is robust and requires no user interaction. This pro-
cess is performed after the automatic hole-cutting and
the outer-boundary points and their donor cells have
been identified.

The overlap optimization method is based on a phi-
losophy that the finest mesh points are kept as part
of the computational domain while the coarser mesh
points should be interpolated from the finer mesh
points. To demonstrate the steps used to achieve the
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overlap optimization, three one-dimensional meshes
are used (see Fig. 10a). Mesh A is stretched from
fine to coarse, Mesh B is stretched from coarse to fine,
while Mesh C has constant spacing that is coarser than
both Mesh A and Mesh B.

Mesh A
—A A 4 A A A A A
Mesh B
—& ® ¢ L L L B
Mesh C
-4 2 \ 4 L 4 —
a) One dimensional meshes
Mesh A
—4& A A A A A & A
L % o4 bd [ ]
1 I
Mesh B ' |
—& L J & ¢ L ® @

b) Step 1: Interpolate between meshes keeping
only coarser mesh points

Mesh A
—A A A A A A A A
Mesh B l l l T T
—® ®  J L 4 o

c) Step 2: Remove interpolated points that are
part of a donor cell

Mesh A
—h A A A A A A A

wct 444

—_—

Mesh B
—® & & \ L

o T

. —————

d) Step 1 and step 2 repeated for other meshes

7

: Field Points

e) Step 3: Keep finest mesh points

Fig. 10 Overlap optimization procedure.

The first step is to interpolate between the mesh
pairs. Starting with Meshes A and B, Mesh A inter-
polates all points from Mesh B and Mesh B interpo-
lates all points from Mesh A. Then, only the coarser
interpolated mesh points (i.e., those points that are in-
terpolated from finer mesh regions) are kept (see Fig.
10b). The arrows in this figure and the remainder of
Fig. 10 indicate the direction of the data flow. The
head of the arrow points to the interpolated point,
while the tail indicates the cell that donates data to
the interpolated point.

In step 2, the interpolated points identified in step
1 are checked to determine if they are also part of a
donor cell. If an interpolated point is part of a donor
cell, it is removed as an interpolated point. The result
for Mesh A and Mesh B is shown in Fig. 10c. Steps
1 and 2 are repeated for the Mesh A to Mesh C pair
and the Mesh B to Mesh C pair. The result for Steps
1 and 2 for these mesh pairs is shown in Fig. 10d.

To complete the overlap optimization process, each
point that is interpolated in a mesh is evaluated to
determine which interpolation is to be kept. If only a
single interpolation has been identified for a point, that
interpolation is kept. If more than one interpolation
has been identified (due to multiple mesh overlap), the
interpolation with the smallest CDP is kept. Using
this procedure, the resulting interpolations and field
points (non-interpolated points) are shown in Fig. 10e.
The field points in Fig. 10e show the effective op-
timized overlap that results from this approach. It
also shows that Mesh C no longer has any active field
points in this region because it is coarser than any of
the other meshes with which it overlaps.

In Fig. 11, an example of two overlapping meshes
and the resulting optimized overlap is shown. It can be
seen that this procedure keeps the overlap region away
from the tightly packed boundary layer region of both
meshes. In Fig. 12, the resulting optimized overlap is
shown for three meshes. The optimized overlap that is
produced in this case would be very difficult to specify
manually, and would be nearly impossible in three-
dimensions.
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b) Optimized overlap
Fig. 11 Flap/airfoil example.

Projection for Viscous Grids

The oversetting process gives the user great flex-
ibility in how the surface of a body is sub-divided
into topologies that ease grid generation. As geometry
has increased in complexity and the need for viscous
solutions has increased, a problem with the overset
approach for viscous grids has arisen. The problem,
which is created by the linear discretization of curved
surfaces, has manifested itself in two forms.

These two forms are depicted in Figs. 13a and 13b,
which show two overlapping grids on a curved sur-
face. The scale of these grids and the curvature of
the surface are exaggerated in these figures to clar-
ify the problem. The first problem type occurs for
a concave surface (Fig. 13a). The surface points for
both grids lie on the true surface of the body, but have
points that do not have legal interpolation stencils.
Therefore, any of these points that must be interpo-
lated from the other mesh would be orphan points.
This form of viscous interpolation problem is easily
identified. The second form of viscous interpolation
errors occurs for a convex surface (see Fig. 13b) and
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is not as easy to identify. In this form, the recipient
points that require interpolation can find donor cells,
but these donor cells are located much further away
from the wall than the recipient points. Therefore, re-
cipient points in the near-wall region of the boundary
layer will receive data from cells in the outer region of
the boundary layer. These viscous interpolation errors
manifest themselves as large velocities near the sur-
face. This error can lead to incorrect boundary layer
profiles and significant errors in the flow solution.

85 0 i = O T T s
i L 0 T Y O s
= T U oF T LRI T v
il — oG = W M AT A3 =
bt e
I Y S8 I | D
T il =« B T
a) Non-optimized overlap
EX L\
{ | STTY
B " s ]
i i L1 1 &
i A P A
| i 5 - -.'\}\.

b) Optimized overlap
Fig. 12 Three mesh example.

To correct this problem, the PROGRD?? code was
developed. PROGRD is used to modify the grids prior
to the interpolation process in PEGASUS. PROGRD,
which projects one grid’s solid-wall surface points onto
the solid-wall surface of another grid, changes the final
grids that are used in the flow solver. This approach
leaves the user with a geometry that has been changed
from the original, i.e., grid points that originally were
on the solid surface are physically moved to faces of
elements in a donor mesh.
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b) Convex surface
Fig. 13 Viscous surface

= = = = Donor Mesh

Recipient Mesh

a) Projection of recipient mesh

Donor Mesh

- — = - Recipient Mesh

b) Projection of recipient mesh
Fig. 14 Mesh projection by mesh pair.

The approach in PEGASUS 5 is to bring the PRO-
GRD methodology into PEGASUS and project the
grids, but only for determining the interpolation in-
dices and coeflicients. The original grid coordinates

interpolation problems.
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are never altered in the new approach. The process
is depicted in Fig. 14. The first step in this pro-
cess is to project the recipient mesh onto the donor
mesh; points in the recipient mesh are then interpo-
lated. The projected mesh is then discarded and only
the interpolation indices and coefficients for the recip-
ient mesh are retained. The process is then repeated
with the identities of the donor and recipient meshes
reversed. As before, only the interpolation indices and
coefficients are retained. This process is repeated for
all mesh pairs that have overlapping surfaces.

Restarting

PEGASUS 5 is highly automated and will often
yield excellent results with minimal input. However,
there are occasions where some modification to the
input is necessary to provide suitable communication
among meshes in a complex chimera system. For ex-
ample, a user may decide to modify a single grid in the
system. A single grid will typically communicate only
with a few other grids in the system. As a result, most
of the information previously generated (i.e., interpo-
lation coefficients between the other grids) are valid,
and should not have to be repeated.

PEGASUS 5 employs a unique restarting capability
whereby only processes that involve dependences on
the modified input are repeated. PEGASUS 5 auto-
matically determines what work needs to be performed
to complete a restart execution. In this manner, a user
can refine the PEGASUS 5 solution incrementally and
inexpensively, rather than by repeating the entire solu-
tion for each input modification. In fact, restarting in
PEGASUS 5 is very similar to using the UNIX “make”
utility, in that previously performed processes that are
independent of local changes are not repeated.

Parallelization

A parallel version of the PEGASUS software was
developed using the Message Passing Interface (MPI)
standard. The architecture of the PEGASUS 5 soft-
ware was designed from the very beginning to be very
amenable to coarse-grained parallelization. Nearly all
of the computations done in the code consist of a num-
ber of operations using data from either an individual
mesh or from pairs of meshes. These operations in-
clude surface projections between all mesh pairs, build-
ing alternating-digital trees (ADTs) for each mesh,
interpolation stencil searches between all mesh pairs,
hole-cutting operations on individual meshes, and
boundary point identification on individual meshes.
Most of these operations are independent of each other
and can be performed simultaneously. However, there
are some processes that are required to be handled
sequentially with respect to each other, e.g., all pro-
jection operations must precede all of the interpolation
operations.
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Fig. 15 PEGASUS 5 operations versus time for
Harrier grid system.
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Fig. 16 Close-up view of the operations being
performed by worker processes.

The parallelization was implemented by creating
a single master process, and NP-1 worker processes,
where NP is the number of MPI processes assigned to
the job. The master initializes the entire PEGASUS
execution, and then asynchronously assigns individual
operations to each of the workers. Once a worker re-
ports back to the master that it has completed its oper-
ation, the master sends it a new operation to perform.
Figure 15 shows a graphical representation of the oper-
ations being performed during an actual PEGASUS 5
execution by each of the workers as a function of time,
where a total of 15 processors (14 workers) were used.
A close-up view of some of the operations is shown
in Fig. 16. This shows worker processors computing
the ADT operations, the interpolation operations, and
an automatic-hole preparation operation. Notice that
most workers become idle for a brief time waiting for
the last ADT operation to complete before the inter-
polation operations are initiated.

The test case used in Figs. 15 and 16 was the
processing of a grid system for a Harrier jet in a
hover mode; this grid system was used in the com-
putational study by Chaderjian et al.2* The Harrier
grid system contains 52 meshes, and the PEGASUS
5 execution required 2429 separate operations. Fig-
ure 17 shows the parallel performance of PEGASUS 5
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running the Harrier problems on both an SGI Origin
02K and Origin O3K at NASA Ames Research Cen-
ter (named “Lomax” and “Chapman” respectively).
The straight dashed line in the figure represents the
theoretical maximum speed up if all NP-1 workers are
kept busy all of the time. Good parallel performance
is seen up to about 16 processors, after which the par-
allel speedup asymptotes at a maximum of a factor of
14. The asymptotic behavior of the parallel speedup
is expected for this coarse-grained approach. The fi-
nal process, labeled as the XINTOUT process in Fig.
15, is performed in serial by just one processor. This
operation is the last step in the code in which all the
final interpolation stencils are gathered and written
to the final output file. One need not run PEGA-
SUS 5 on a large parallel system to take advantage of
the parallelization. For instance, a user working on a
dual-processor workstation can utilize this capability
to reduce the PEGASUS 5 execution turn-around by
a factor of two.

iz Lo 4
24— || ) Chapran 1 1 1 1 ,..4' 1
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20 —

16 —

Speed-up

T T
16 20
HNo. of Processors
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Fig. 17 Parallel performance for the Harrier jet
configuration on two SGI Origin computers.

Examples

Three example PEGASUS 5 test cases are pre-
sented. They are a three-element high-lift airfoil, a
generic business jet configuration, and a Boeing 777
aircraft in a landing configuration. The user mod-
ifications to the input and the required computing
resources are described for each case. For the first
and last cases, flow solutions have been computed us-
ing the results of both PEGASUS 4 and PEGASUS
5 connectivity files. These flow computations utilized
the OVERFLOW?:8 flow solver.

Two types of input files are required by the PE-
GASUS 5 software: the volume grid files, and a text
input file. The grid files contain the coordinates for
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each individual mesh, and the text file contains the
boundary conditions, and possibly other input vari-
ables to customize the behavior of the software. There
are several utility programs that come with the PE-
GASUS 5 software to aid in the generation of these
input files. If one is preparing a grid system for use by
the OVERFLOW flow solver, the user need only sup-
ply the OVERFLOW input file (containing all of the
boundary conditions), and a composite grid file con-
taining the coordinates of all of the individual meshes.
A script (“peg-setup”) reads these two files and gen-
erates all of the input files required by PEGASUS 5.
This method was used for each of these examples.

A description of all of the possible input variables
recognized by PEGASUS 5 is beyond the scope of this
paper. The most commonly used input variable which
a user might need to modify to fix problems with the
automatic hole cutting operation is the OFFSET input
variable. This variable may be specified globally for all
meshes at once, or independently for each individual
mesh. The default value of OFFSET is zero. Values
greater than zero cause the code to enlarge any holes
in a particular mesh. It does this by examining every
point in a mesh; if a point is within OFFSET cells of
a hole point, then it too gets blanked.

Multi-Element Airfoil

The first test case is a two-dimensional three-
element airfoil known as the 30P30N configuration,?®
which was built and tested extensively by the for-
mer McDonnell-Douglas company and NASA Langley
Research Center. It has been commonly used as a
high-lift CFD validation configuration. The airfoil
consists of a main-wing section with a leading-edge
slat and a trailing-edge flap. The grid system consists
of seven zones and 313,000 grid points. These overset
grids were used previously as a test case for an au-
tomated grid-generation procedure?® which used the
PEGASUS 4 software.

The only modification to the automatically gener-
ated PEGASUS 5 input file was to increase the global
OFFSET variable to 2, and to set the OFFSET vari-
able to a value of 5 for both of the “box” grids. PEGA-
SUS 5 ran in 65 seconds on a single SGI R10K 250Mhz
CPU. Details of the resulting grid system are shown in
Figs. 18 and 19. Figure 18 depicts the slat and wing
grids at the slat trailing edge and wing leading edge.
The symbols indicate the location of fringe points,
which are boundary points in a grid that will receive
interpolation boundary conditions from its overlapping
neighbor. Figure 18a shows all of the fringe points;
Fig. 18b shows only fringe points which are one or
two points away from an active interior point. Thus
Fig. 18a shows the actual hole cut by PEGASUS 5;
Fig. 18b shows the effective hole. Note that the actual
hole in the wing grid is too close to the slat trailing
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edge. This is because the Cartesian hole-map typi-

cally does not have enough resolution to resolve an
extremely thin trailing edge. However, as can be seen
in Fig. 18b, the effect of the interpolation optimiza-
tion is to create a larger hole in the wing near the slat
trailing edge.

a) All fringe points

Fig. 18 Fringe points near the slat trailing edge.

Figure 19 shows the grids around the wing and the
flap in the vicinity of the wing trailing edge and the
flap leading edge. Again the symbols mark the fringe
points. Figure 19a shows the actual hole, and Fig. 19b
shows the effective hole.

The resulting grid system was used to compute a
solution with the OVERFLOW flow solver. A flow so-
lution was also computed for a grid system obtained by
running the PEGASUS 4 code with the same meshes
used by PEGASUS 5. For these computations the free-
stream Mach number was 0.2, the Reynolds number
was 9 million, and the angle of attack was 8.1 degrees.
Very similar results were obtained for both grid sys-
tems. Figure 20 plots the pressure coefficient results
for these calculations together with some experimen-
tal results for this geometry. The experimental values
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are plotted with the circles, the PEGASUS 4 results
are plotted with a dashed line, and the PEGASUS
5 results are plotted with a solid line. Although the
CFD results have suction peaks that are higher than
the experimental results, there is no visible difference
between the PEGASUS 5 and PEGASUS 4 results.
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b) First and second fringe points
Fig. 19 Fringe points near the wing trailing
edge.

Business Jet

This test case is a generic business jet geometry con-
sisting of a fuselage, wing, and an aft-mounted pylon
and nacelle. The grid system consists of 13 meshes
and 3.5 million grid points. Two modifications were
made to the automatically generated input file in or-
der to produce a high-quality grid system. The first of
these changes was to increase the global value of the
OFFSET parameter from 0 to 1, and to increase the
OFFSET value to 2 for the nacelle mesh. This im-
proved the automatically-generated holes and blanked
some points that were left inside the thin trailing edges
of the wing, the pylon, and the nacelle during the ini-
tial run. The second change was the “unblanking” of
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an automatic hole that was being cut into the surface
grid of the wing fillet. This type of undesirable auto-
matic hole cut can occur where two or more surface
grids overlap in a region with significant surface cur-
vature. When this occurs it can usually be fixed very
easily by specifying a range of grid indices in the input
file where PEGASUS 5 is not allowed to cut any holes.
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Fig. 20 Pressure coefficient results on three-
element airfoil.

With the addition of these changes to the input
file, PEGASUS 5 produces a good-quality grid sys-
tem for this case. The code required 30 minutes of
CPU time on a single SGI R10K 250Mhz CPU for
the initial run using the automatically generated in-
put file. After making the above changes to the input
file, the restart execution required only 2.5 CPU min-
utes. The resulting grid was left with only 19 orphan
points, i.e., boundary or fringe points for which the
code was unable to find an acceptable interpolation
donor cell from a neighboring mesh. A small number
of orphan points is considered acceptable by practi-
tioners of overset CFD methods. Most flow solvers,
such as OVERFLOW, have a procedure to update
the dependent variables at orphan points by averag-
ing the dependent variables from adjacent computed
grid points in the same mesh.

Figure 21 shows the fringe and boundary interpo-
lation points in the symmetry plane, where they are
marked with circles. The rectangular-shaped grid cells
are part of an inner-box mesh that surrounds the
body-fitted meshes. The grid system also contains an
outer-box mesh that extends to the far-field boundary
which is not shown in the figure. The figure shows the
double-row of outer-boundary points belonging to the
inner-box mesh which receive interpolated information
from the outer-box mesh. The darker symbols sur-
rounding the airplane show the outer-boundary points
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of the fuselage mesh which receive interpolated data
from the inner-box mesh. The lighter symbols show
the fringe points surrounding the hole cut in the inner-
box mesh; these receive interpolated information from
the fuselage mesh. Figure 22 shows grid planes in a
constant stream-wise plane which intersect the center
of the nacelle and pylon. This figure also shows the
symbols denoting all of the fringe and outer-boundary
interpolation points in these grid planes. This figure
shows the complex intersections of the nacelle grid,
the two pylon grids, the fuselage grid, and a box grid
which surrounds the pylon and nacelle.

i f;lhn'e_r‘—fBoix_ _
| [Fringe Points | I
Fig. 21 Interpolated points in the symmetry
plane for the business jet case.
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Fig. 22 Fringe points surrounding the nacelle
for the business jet case.

Boeing 777 Aircraft

The final example is by far the most complex ge-
ometry used to test PEGASUS 5: a Boeing 777-200
aircraft in a landing configuration with 30-deg flap de-
flection. Figure 23 shows the surface grids used for
this case, with only every fourth grid point plotted
in each direction for clarity. The geometry includes
the fuselage, vertical tail, wing, pylon, flow-through
nacelle and core cowl, inboard and outboard slats, a
leading-edge krueger slat, double-slotted inboard flaps,
flaperon, outboard flap, and the three largest flap-
hinge fairings. Figure 24 shows the view of the surface
grids from underneath the aircraft, looking inboard at
the flaps and the inboard flap-hinge fairing. The grid
system for this geometry was originally developed by
Rogers et al.2” as part of the NASA and Boeing Ad-
vanced Subsonics Technology Program. This geometry
was used as a demonstration case to meet a program
milestone requiring a complete high-lift aircraft CFD
simulation to be performed in 50 labor days. The mile-
stone was met by computing the first solution, with
just the CAD definition as the initial starting point,
with 48 labor days of effort. Of this time, 32 labor
days were required to perform the over-setting of the
volume grids using the PEGASUS 4 software.

Fig. 23 Surface grids on Boeing 777-200.

The 777 volume grids consist of 79 meshes and 22.4
million grid points. For this problem, PEGASUS 5
initially was executed on 16 processors of an SGI Ori-
gin O2K system. The code required 40 minutes to run
from start to finish, in which just over 9 CPU hours
of execution time was accumulated, for a parallel effi-
ciency of 85%. After the initial run of the code, it was
apparent that the default automatic hole cutting did
not have nearly enough resolution for the wide range of
length scales in this problem. In particular, the small
gaps between the high-lift elements are about three
orders of magnitude smaller than the fuselage length
and the wing semi-span. Thus the first modification
made to the default PEGASUS 5 input was to cre-
ate a number of additional automatic Cartesian-hole
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maps. Each of the high-lift elements which formed a
fully-enclosed surface were used to create a separate
hole cutter; this included the two slat elements and
three of the four flap elements. The hole-cutter com-
posed of the fuselage and wing was split spanwise into
three separate hole cutters. This was quite easy to
accomplish by manually specifying the minimum and
maximum coordinates for each cutter. Each of these
three hole-cutters were also increased in resolution by
50% in both the longitudinal and vertical directions.
After re-running PEGASUS 5 with these eight auto-
matic hole-cutters, the input was further refined by
increasing the OFFSET value to 1 or 2 for nearly half
of the meshes. It was also found that a large number of
orphan points were created because the default limits
on the surface-to-surface projections were too restric-
tive. The maximum allowable projection distance was
increased by 50% to fix this problem. Finally, two re-
gions of some overlapping grids near the surface had
to be “unblanked” to correct for some bad hole cutting
through the surfaces of some overlapping grids.

Fig. 24 Underside view of flaps and flap-hinge
fairing.

After these input-file modifications, a final grid sys-
tem was obtained which contained just under 1200
orphan points. This compared very favorably to the
grid system created by PEGASUS 4, which had just
under 5600 orphan points. The total labor time spent
running and modifying the PEGASUS 5 inputs was
three days, an order of magnitude decrease of the 32
days required by PEGASUS 4 for these same volume
grids. Furthermore, the input modifications required
for PEGASUS 5 were significantly simpler compared
to the user input required by PEGASUS 4.

Subsequent runs of PEGASUS 5 for the 777 grid sys-
tem were performed to test the parallel performance
of the code. The parallel speed-up for the 777 was bet-
ter than for the Harrier grid system, as it was able to
benefit from the use of more processors. The 777 grids
were run on 48 SGI Origin processors, which provided
a speed-up of a factor of 33 over the use of a single
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processor. Using 48 processors, the code was able to
process the 777 grids in less than 13 minutes.

The OVERFLOW code was run using this new PE-
GASUS 5 grid system in order to compare with the
computed flow results from the PEGASUS 4 grid sys-
tem. Several angles of attack were run, matching the
PEGASUS 4 cases reported in Ref. 27. The Mach
number was 0.2, and the Reynolds number based on
the mean aerodynamic chord was 5.8 million. The lift
coefficients for these new runs are plotted in Fig. 25,
together with the previous computational results and
experimental results for this geometry.

[===Experiment |
i e PEGSUS 4.1 results

-A~PEGASUSSrestits |
5 0 5 0 B

Angle of 1£ttack
Fig. 25 Lift coefficient versus angle of attack,
comparing OVERFLOW results for the PEGA-
SUS 4 and PEGASUS 5 grid systems.

The actual value of the lift coefficient is not included
on the vertical axis labels due to the proprietary na-
ture of this data. It can be seen that the PEGASUS 5
results match very well with the PEGASUS 4 compu-
tations. The new results show a slight decrease in lift
at the negative angles of attack, further away from the
experimental data, and a slight increase in lift at the
highest angles of attack, where the computed solution
has stalled over the inboard portion of the wing. Thus
the computational results fail to predict maximum lift;
a discussion of the possible reasons for this is given
in Ref. 27. However, the computational results do
agree well with the experimental data at angles of at-
tack of 12 degrees and lower, and at typical approach
conditions, the computed lift is within 1.5% of the ex-
perimental lift.

Performance

Here a breakdown of the computational cost of each
process is given, in order to quantify the performance
of the current algorithms. The average percentage of
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the primary processes for each of the three test cases is
given. The projection process used 10% of the process-
ing time; the interpolation process used approximately
50% of the total time; the hole-cutting processes used
about 30% of the time; and the overlap optimization
used about 5% of the time.

The cost of the hole-cutting operation is the second
most expensive step in the code. A typical three-
dimensional problem will require that approximately
5% to 15% of the grid points must be blanked out
in the hole-cutting procedure. The current algorithm
processed hole points at the rate of 100 to 200 blanked
points per CPU second on an SGI R10K 250 Mhz
workstation.

It is to be expected that the interpolation process
uses more time than any other process because it
searches for all possible donor cells for every single grid
point. In fact, the interpolation process typically pro-
duces an average of two or three donor cells for each
grid point. The computational performance of the in-
terpolation scheme is on the order of 10,000 donor cells
per CPU second on an SGI R10K 250 Mhz worksta-
tion. Approximately 5% of the donor grid cells found
in the interpolation process are ultimately kept and
stored in the final output file. While this approach
may seem excessive or even wasteful, the goal of the
current work was to produce a fully automatic code.
Indeed, the cost of increased computational cost ap-
pears to be well worth the minimal amount of user
time and expertise that is required by PEGASUS 5.

The PEGASUS 5 code enables a user to effectively
perform overset-grid connectivity for a complex three-
dimensional problem in one day of labor time, which
represents at least an order-of-magnitude improvement
over the use of the old PEGASUS 4 code. The ear-
lier version would often require on the order of 10 to
20 days of labor time spent changing inputs and re-
running the code to perform such an operation,?® and
required significantly greater user expertise than is re-
quired by the PEGASUS 5 software. The realization
of a production-ready code to automatically perform
the overset pre-processing takes a big step toward re-
alizing the 1996 strategic goal of the NASA/Boeing
Advanced Subsonic (AST) Program of reducing cycle
time for a complex 3D problems from hundreds of days
to 5 days.?®

Conclusion

The newest version of PEGASUS, version 5, has
been automated to reduce the number of user in-
puts and the time required to determine the inter-
connectivity between overlapping meshes.Automation
of the hole cutting and outer boundary specification
is based on the inputs required by the flow solver,
which can be automatically generated by other readily
available overset-CFD software. This greatly decreases
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the user-input requirements. Additionally, the overlap
optimization and the projection process improves the
inter-connectivity solutions that are produced by PE-
GASUS 5.

The modular design of the PEGASUS 5 software
made it straightforward to implement a coarse-grain
parallel approach using the MPI message passing li-
brary. The parallel version of the code will always
reproduce the same results as the serial version. It
exhibits efficient execution speed-up for a modest num-
ber of processors, depending on the problem size. A
speed-up of over a factor of 33 was obtained on 48 SGI
Origin processors for the Boeing 777-200 test case.

The computed OVERFLOW results illustrate that
grid systems produced by the new version of PEGA-
SUS lead to the same results as those from the old
version, but at a significant cost savings in terms of
both effort and required user expertise. The amount
of user time and expertise required for the Boeing 777-
200 aircraft was an order of magnitude less that that
required by the PEGASUS 4 code for processing the
same volume grids.
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